Portada » Biología » Cuales hidrocarburos estan presentes en el petroleo
El petróleo es una de las sustancias más valiosas de que podemos disponer. También se le conoce como «aceite mineral».
El aceite mineral o petróleo se encuentra en el interior de la tierra y se compone principalmente de carbono e hidrógeno; lo que significa que es un hidrocarburo y no un mineral, ya que procede de sustancias orgánicas. La palabra petróleo, proviene de las voces latinas petra y oleum, que significan piedra y aceite, no porque sea aceite de piedra, sino por estar aprisionado entre piedras.
El petróleo es un fluido algo espeso cuyo color varía bastante, así como su composición. A veces se presenta amarillo, otras verde, y otras casi negro. Generalmente tiene un olor muy desagradable y su densidad está comprendida entre 0´8 y 0´95. En composición varía tanto como en color, y en este sentido nos recuerda al carbón. Según el Diccionario Enciclopédico Ilustrado Océano Uno, petróleo es un:
«líquido aceitoso, de color oscuro, olor característico, más ligero que el agua, constituido por una mezcla de hidrocarburos líquidos naturales, que se encuentra generalmente almacenado en rocas del interior de la corteza terrestre»,
mientras que la definición que encontramos en el Diccionario Hispánico Universal, aunque similar, es un poco más completa:
«Líquido oleoso más ligero que el agua y de color oscuro y olor fuerte; se encuentra nativo en lo interior de la Tierra y a veces forma grandes manantiales. Es una mezcla de carburos de hidrógeno, que arde con facilidad, y después de refinado tiene diversas aplicaciones».
Al igual que el carbón, el petróleo se encuentra a muy distintas profundidades en la Tierra. En algunos lugares sólo hay que perforar algo más de quince metros para encontrarlo, mientras que en otros es necesario llegar hasta profundidades de dos mil o más metros.
El petróleo está almacenado en la Tierra en capas o estratos de roca porosa, tal como la piedra caliza o la arenisca, o en capas de arena o sobre una capa impermeable. Cuando estos estratos se encuentran cubiertos con rocas más duras, tenemos un campo petrolífero ideal.
Los técnicos creyeron durante algún tiempo que el petróleo era de origen inorgánico,
es decir, que se había formado dentro de la Tierra mediante reacciones químicas.
Hoy día, los hombres de ciencia, convienen de manera casi general en que el petróleo se origina de una materia prima formada principalmente por detrito de organismos vivos acuáticos, vegetales y animales, que vivían en los mares, las lagunas o las desembocaduras de los ríos, en las cercanías del mar y que han permanecido enterradas por largos siglos.
El petróleo se encuentra únicamente en los medios de origen sedimentario. La materia orgánica se deposita y se va cubriendo por sedimentos; al quedar cada vez a mayor profundidad, se transforma en hidrocarburos, proceso que según las recientes teorías, es una degradación producida por bacterias aerobias primero y anaerobias luego. Estas reacciones desprenden oxígeno, nitrógeno y azufre, que forma parte de los compuestos volátiles de los hidrocarburos. A medida que los sedimentos se hacen compactos por efectos de presión, se forma la «roca madre». Posteriormente, por fenómenos de «migración», el petróleo pasa a impregnar arenas o rocas más porosas y más permeables (areniscas, calizas fisuradas, dolomías), llamadas «rocas almacén «, y en las cuales el petróleo se concentra, y permanece
en ellas si encuentra alguna trampa que impida la migración hasta la superficie donde se oxida y volatiliza.
Tradicionalmente, se sitúa en 1859 el origen de la industria petrolífera con la perforación del famoso pozo Edwin Laurentine Prake (1819- 1880), que reveló los ricos yacimientos de Pennsylvania y abrió la era del petróleo para lámparas (1860-1900); le sucedió la de las gasolinas y aceites para automóviles y aviación, después de la de los combustibles líquidos, a partir de 1910 se introdujo en el mundo de la marina, sobre todo desde 1950 domina el de la petroquímica y se halla a las puertas de la biología.
El descubrimiento de yacimientos puede preverse por técnicas de prospección terrestre y si fue relativamente fácil encontrar en el siglo XIX los primeros campos petrolíferos gracias a índices geológicos superficiales, la exploración del subsuelo a profundidades que alcanzan casi los 900 m. debe apelar a todos los recursos de la geofísica.
Las técnicas de prospección terrestre nos ayudan en el descubrimiento de yacimientos petrolíferos.
Encontrar petróleo es difícil, pero numerosas ramas de la ciencia coadyuvan a esta importante tarea. La Sismología o estudio de los terremotos; la Geología, que se ocupa del conocimiento de la corteza terrestre; la Paleontología o estudio de la formación de la Tierra; la Cartografía, que tiene por objeto la construcción de mapas; la Química e incluso la Bacteriología, que se dedica al estudio de los gérmenes, son valiosas ciencias auxiliares para los científicos consagrados a la búsqueda de nuevos campos de petróleo.
La gravimetría y la magnetometría, que miden respectivamente la aceleración de la gravedad y el magnetismo terrestre, permiten en primer lugar trazar mapas subterráneos o submarinos bastante precisos. El estudio de la cartografía reciente del sector es el primer paso para iniciar los procedimientos de investigación del área, luego le siguen estudios de geología de superficie, sondeos, análisis de los tejidos de sondeo, y estudios magnéticos, gravimétricos y sísmicos.
Los métodos magnéticos registran las distorsiones del campo debidas a las variaciones de susceptibilidad magnética y del magnetismo permanente de las rocas. La prospección magnetométrica aérea permite detectar con rapidez las anomalías importantes de la estructura del zócalo en áreas muy extensas; se realiza mediante un aparato sujeto al avión, que se orienta automáticamente según el vector del campo magnético terrestre y mide su intensidad total. Así se detectan anomalías magnéticas de carácter local, que están a menudo relacionadas con accidentes del zócalo; otras veces sirven para determinar el espesor de las sedimentarias (puesto que éstas no son, por lo general, magnéticas), y delimitar así la cuenca sedimentaria antes de iniciar los sondeos.
Los métodos gravimétricos miden las fluctuaciones del campo de gravedad terrestre. Se utilizan especialmente para la localización de domos de sal, con frecuencia relacionados con el petróleo. Ello se debe a que la sal tiene una densidad mucho menor que otros tipos de sedimentos, y las acumulaciones salinas se señalan con un mínimo gravimétrico.
Los métodos sísmicos se basan en la creación de un campo artificial de ondas sísmicas mediante cargas explosivas; dichas ondas se propagan según la elasticidad de las capas y son recogidas, tras reflejarse o refractarse, por unos detectores situados en la superficie.
Probablemente, la mayor contribución de la ciencia a la localización de nuevos pozos petrolíferos la representa un modelo especial de sismógrafo.
Se hace una pequeña perforación en el terreno donde se sospecha la existencia de petróleo, se coloca en ella una pequeña carga de explosivo y se procede a su voladura. A este método se le llama prospección sísmica y son verdaderos mini sismos artificiales provocados por explosiones de cargas detonantes que, como ya se dijo, se pueden estudiar después con más precisión las formaciones interesantes cuyos contornos se revelan por la reflexión o refracción de ondas elásticas. La onda sonora no se desplaza por el interior de la Tierra a velocidad uniforme, sino con arreglo a la naturaleza de las capas que atraviesa: arena, piedra caliza, roca dura, etc. Desde estas diferentes capas parten hacia la superficie ecos que son registrados por el aparato y que debidamente interpretados facilitan la localización de depósitos de aceite mineral o petróleo.
Por más perfeccionados que sean los métodos de prospección geofísica, el único medio de estar absolutamente seguro de la existencia de un yacimiento de petróleo o de gas es utilizando el método del sondeo. El sondeo de reconocimiento sigue siendo de gran importancia en la prospección, a pesar de su elevado coste.
La extensión de estos métodos terrestres a la prospección marina (offshore) supone resueltos los problemas de posicionamiento en alta mar: los levantamientos visuales deben remplazarse por cruces, de ondas hertzianas provenientes de estaciones de tierra o radio satélites.
Las zonas submarinas a explorar son posteriormente balizadas disponiendo en el fondo del mar emisores de ultrasonidos que permiten al navío situarse muy exactamente sobre sus objetivos.
Si bien resulta generalmente más cómodo prospeccionar en mar que en tierra, donde se choca con las dificultades de movimientos debido a la naturaleza o al hombre, la sísmica marina exige, sin embargo, la puesta a punto de métodos especiales, pues aunque sólo sea para no alterar el equilibrio ecológico de la fauna, las cargas de explosivos están prohibidos en las zonas pesqueras.
La onda necesaria se obtiene, pues, por medio de una descarga eléctrica, por emisión brutal de aire comprimido o vapor de agua o mediante detonación de gas.
Sacar petróleo de las entrañas de la Tierra es más fácil que extraer carbón. Se taladra un agujero pequeño y se bombea, o bien se deja que la presión natural, si existe, lo eleve hasta la superficie.
En fin, cuando la perforación ha alcanzado la zona petrolífera, se procede a la puesta en servicio del pozo, operación delicada si se quiere evitar la erupción y a veces incendio.
En la explotación de un yacimiento se distinguen dos periodos que son la recuperación primaria y la recuperación secundaria.
En la recuperación primaria, por el efecto de la presión, el petróleo sube por sí mismo a la superficie: la emanación se debe al drenaje por gravedad o al reemplazamiento del aceite sea por una subida del agua bajo presión (water-drive), sea por la expansión del gas disuelto (depletion-drive), o incluso por la dilatación del gas comprimido que sobrenada el aceite (gas capdrive) o una combinación de estos mecanismos.
Por consiguiente, la presión natural que tiene tendencia a bajar con rapidez se intenta restablecer por medio de una inyección de gas comprimido (gas-lift) antes de disolverle en el bombeo con bombas de balancín (cabeza de caballo) cuyo lento movimiento alternativo es transmitido por un juego de tubos al pistón situado en el fondo del pozo. Llegado a la
superficie, el petróleo bruto pasa a una estación de «limpiado», donde se le extrae primero el metano y los gases licuados (estabilización), electrostática y por fin el sulfuro de hidrógeno de desgasificación a contracorriente (stripping).
Para luchar contra el colmatado progresivo de los poros de la roca petrolífera y restablecer la actividad del yacimiento, es necesario «estimular» periódicamente los pozos por acidificación (inyección de ácido clorhídrico), por torpedeo (perforación con la ayuda de balas tiradas con un fusil especial cuyos explosivos descienden a la altura de la formación o por fracturación hidráulica (potentes bombas de superficie hasta la ruptura brutal de la roca colmatada).
En la recuperación secundaria los métodos procedentes, no permiten, por sí solos, llevar a la superficie más que el 20% aproximadamente del petróleo contenido en el yacimiento; de aquí viene la idea de extraer una gran parte del 80% restante gracias a uno de los artífices siguientes:
Hay diversas formas de efectuar la perforación, pero el modo más eficiente y moderno es la perforación rotatoria o trepanación con circulación de barro.
Primero se construye un armazón piramidal de acero o de madera (se suelen hallar muchas en Europa), llamado «torre», de unos veinte o treinta metros de altura, que sirve para sostener la maquinaria necesaria para mover un taladro rotatorio que trabaja como el berbiquí de los carpinteros, y que va entrando en la roca como éste en la madera.
Es muy rápido en su trabajo, pues completa la perforación en unas cuantas semanas.
Los pedacitos pulverizados de roca que va cortando, son arrastrados, según desciende la herramienta, por medio de un chorro de agua a presión que los saca del agujero.
Al salir este fango a la superficie revela la naturaleza de la roca a través de la cual está pasando la herramienta cortadora. El agujero que practica el taladro se forra con una tubería de hierro.
Un pozo de petróleo es, por lo tanto, un tubo fino y largo de hierro que atraviesa la roca hasta llegar al estrato que lo contiene.
Generalmente se encuentran capas intermedias de agua, antes de llegar al petróleo. Las perforaciones se hacen mediante trépanos, y las paredes del largo tubo que se forma son mantenidas en su sitio con caños que se introducen más tarde, y por los que salen a la superficie los materiales arrancados del interior de la tierra.
La silueta característica del pozo de perforación es un mástil o estructura piramidal que permite subir y retirar una a una las tuberías de los pozos a fin de recambiar la punta trepanadora usada y llevar a la superficie una muestra de la roca perforada.
Las capas subterráneas ricas en petróleo pueden encontrarse bajo las aguas de los mares o bajo las extensiones yermas de los desiertos, lo mismo que en algunas regiones cubiertas de espesas selvas tropicales.
Cada yacimiento de petróleo está constituido por una mezcla de miles de hidrocarburos diferentes, formados por la asociación de átomos de carbono e hidrógeno, cuyo origen todavía es mal conocido; a esta mezcla se agregan cantidades variables de sustancias que contienen azufre, nitrógeno y oxígeno: de los más de 1.500 campos petrolíferos conocidos, no se han encontrado aún dos crudos exactamente iguales.
Según la predominación de uno de los compuestos característicos, se pueden clasificar los petróleos en:
Por otro lado, algunos hidrocarburos raros o ausentes en el petróleo bruto son sintetizados por cracking o por hidrogenación y se encuentran en los productos petrolíferos después del refino y en petroquímica; tales son las olefinas o hidrocarburos etilénicos CnH con doble enlace entre los átomos de carbono, los hidrocarburos aromáticos o el acetileno.
Para dilucidar la naturaleza compleja del petróleo crudo y sus derivados, se han tenido que poner a punto procedimientos que permiten determinar la composición y las características físico-químicas de los diferentes productos, después estudiar su comportamiento, primero por ensayos de simulación en laboratorio, después en el curso de su utilización real ulterior.
En particular métodos de análisis muy rigurosos se han desarrollado y normalizado, primero en Estados Unidos, después en el mundo entero, para asegurar que la calidad de los derivados del petróleo está definida de manera incontestable antes de ser entregados para su consumo.
Los Estados Unidos de América es el mayor extractor de petróleo, y hasta tal punto es así, que su producción viene a ser la mitad de la mundial. Pero esto en algún modo significa que posea la mitad de la existencia mundial de este producto.
La razón es que los Estados Unidos de América ha desarrollado y está consumiendo con mayor rapidez sus recursos petroleros.
No cabe la menor duda de que el resto del mundo posee una cantidad de petróleo mucho mayor que la poseída por el gran coloso de América. En todo el mundo se producen alrededor de 6.000 millones de barriles por año y, como es sabido, cada barril contiene 160 litros.
Aparte de Estados Unidos de América, los otros grandes productores son: Rusia, Venezuela, Irán, Indonesia, México, Rumania, Irak, Colombia, Argentina, Trinidad, Perú, India y Birmania.
Canadá produce también una considerable cantidad, y se le abren, en este sentido, magnificas perspectivas. Las mayores reservas de petróleo en el mundo se encuentran, en efecto, en Athabaska (Alberta, Canadá). Según un cálculo oficial, se estiman las reservas de Athabaska en 100 billones de barriles, y, según otra estimación, también oficial, hay más del doble de la cantidad mencionada.
El papel del transporte en la industria petrolífera es considerable: Europa occidental importa el 97% de sus necesidades, principalmente de África y de Oriente Medio y Japón el 100%. Pero los países que se autoabastecen están apenas mejor dotados, porque los yacimientos más importantes se encuentran a millares de kilómetros de los centros de consumo, en Estados Unidos como en Rusia, en Canadá como en América del Sur.
El petróleo gigante (superpetrolero), es el medio más económico para transportar energía, bajo la forma que sea; tiene asimismo la ventaja de una gran flexibilidad de utilización; en conjunto, los mares del mundo están surcadas permanentemente por una flota de un total de 244 M de capacidad, constituida por millares de unidades radio dirigidas en cada instante según las exigencias lógicas.
Los «buques-tanques», barcos donde el petróleo es transportado, se construyen generalmente para este fin y son, en realidad, verdaderos tanques flotantes. Trabajar en ellos resulta muy desagradable, pues a bordo todo huele a petróleo. Por ello, sus tripulaciones reciben una buena paga.
En Europa, el aprovisionamiento de zonas industriales alejadas del mar exige el equipamiento de puertos capaces de recibir los superpetroleros de 300,000 y 500,000 Tm* de carga, almacenamientos gigantes para la descarga y tuberías de conducción (pipe-lines) de gran capacidad.
La pipe-line de petróleo bruto (oleoducto) es el complemento indispensable y a veces el competidor del navío de alta mar: en efecto, conduce el aceite del yacimiento situado a una distancia más o menos grande de tierra adentro, al puerto de embarque del yacimiento submarino a la costa más cercana; del yacimiento directamente a la refinería o finalmente, del puerto de desembarco a la refinería.
La instalación de un nuevo oleoducto requiere gran cantidad de estudios previos, en los cuales se tiene en cuenta todo lo que puede acortar o beneficiar el proceso del transporte. El sistema de transporte del petróleo por tuberías resulta tan eficiente y económico que existen hoy miles de kilómetros de ellas, que van desde los pozos de los que surge el preciado líquido hasta los establecimientos de refinación o hasta las estaciones y puertos de embarque del producto. El aceite mineral es bombeado por kilómetros y kilómetros a través de las tuberías del oleoducto. Una serie de estaciones de bombeo lo va empujando hasta que llega a las refinerías, en donde pasará los procesos de destilación.
Llevado por los buques-tanques, por vagones especiales o modernos oleoductos, el petróleo llega a la refinería.
La necesidad de almacenar los recursos energéticos para controlar mejor su producción, su transporte, su distribución y su utilización es evidente en la medida en que se desea asegurar un abastecimiento abundante y regular de las industrias y de los consumidores.
Ahora bien, la industria del petróleo como la del gas, están sometidas a riesgos de toda especie, cuyo origen puede ser debido a deficiencias técnicas, como las averías de las máquinas en las refinerías, a bordo de los buques o en los oleoductos; a causas naturales imprevisibles, como la incertidumbre en la prospección de los yacimientos, las tormentas en el mar y en tierra o los incendios; y también a problemas políticos, económicos y comerciales, como las crisis que afectan periódicamente las relaciones entre países productores y países consumidores.
El petróleo crudo se deposita en grandes tanques de acero, cada uno de los cuales tiene cabida para algunos centenares de barriles. Al calentarlo, la sustancia más ligera se convierte en un vapor que se recoge y se condensa.
La temperatura permanece fija mientras se está evaporando dicha sustancia, pero tan pronto como toda ella ha sido transformada en vapor, la temperatura comienza a elevarse hasta alcanzar el punto de
ebullición de la siguiente, es decir, de la que hierve a temperatura más baja entre las que quedan. De esta forma se logra ir separando los distintos hidrocarburos que componen el petróleo.
En realidad, el almacenamiento debe quedar asegurado en cada etapa del camino recorrido por el petróleo para ir desde el pozo hasta el surtidor o la caldera. Entre los tipos de almacenamientos tenemos:
Es raro que una refinería pueda ser alimentada directamente a partir del yacimiento, debiendo existir una doble rotura de la continuidad del caudal en su trayecto intermedio por buque-cisterna o por oleoducto transcontinental, lo que obliga a mantener un stock de petróleo bruto de cinco días como media, tanto en el punto de embarque como en el de desembarque.
La capacidad del terminal, o almacenamiento de cabeza de línea, debe tener en cuenta la capacidad unitaria (500.000 Tm) de carga para los más recientes superpetroleros. La cadencia irregular de llegada de los buques para cargar y descargar, la capacidad y el método de explotación de los oleoductos, y por último la necesidad, de almacenar aparte ciertos petróleos brutos menos sulfurosos.
Se deben prever numerosos depósitos aguas arriba y abajo de cada unidad de proceso para absorber las discontinuidades de marcha debidas a los paros de mantenimiento y a los tratamientos alternativos y sucesivos de materias primas diferentes, para almacenar las bases, cuyos productos terminados serán sacados a continuación por mezcla, y para disponer de una reserva de trabajo suficiente a fin de hacer frente a las variaciones de envío, tales como la recogida de un gran cargamento recibido por mar.
Solamente una pequeña parte de la clientela puede ser abastecida directamente, es decir por un medio de transporte que una directamente el usuario con la refinería.
En la mayoría de los casos, es más económico construir un depósito-pulmón, terminal de distribución, abastecido masivamente por el medio de transporte que viene de la refinería, ya se trate de conducciones (oleoductos de productos terminados), buques (para los depósitos costeros), barcazas fluviales, vagones cisterna o camiones cisterna.
A partir de este depósito-pulmón, el consumidor será alimentado por un corto trayecto de grandes transportes por carretera o camiones de distribución.
Tras la crisis de 1956 (segunda guerra árabe-israelí) que condujo al racionamiento de la gasolina en ciertos países de Europa Occidental, la mayoría de ellos, introdujeron en
sus legislaciones normas de existencias de reserva obligatorias. En Francia, por ejemplo, las compañías petroleras deben poseer en todo momento en los depósitos de las terminales portuarias de las refinerías y de los almacenes de distribución una cantidad de producto igual a tres meses de consumo del mercado interno; sólo una cuarta parte de esta reserva puede conservarse en forma de petróleo bruto, no tratado; el resto debe estar formado por productos refinados disponibles inmediatamente.
Panamá cuenta con instalaciones Portuarias en Balboa, Roadman, Cristóbal, Charco Azul, Chiriquí Grande y Bahía Las Minas, las cuales están dotadas de infraestructuras de almacenamiento de combustibles.
Cuenta además, con un oleoducto de 131 kilómetros de Longitud que trasiega de petróleo crudo del Pacífico al Atlántico. Este oleoducto tiene una capacidad de bombeo de 800,000 barriles por día y de 2.5 millones de barriles de almacenamiento en cada una de sus terminales, en el Pacífico (Charco Azul) y en el Atlántico (Chiriquí Grande).
En Panamá existen actualmente siete (7) Zonas Libres de Petróleo y una capacidad de almacenamiento de combustibles en el orden de los 14 millones de barriles.
Los productos petrolíferos se almacenan en el suelo debido a la preocupación por la seguridad, siempre pensando en proteger los depósitos de atentados; además, es también una solución económica a los problemas de los grandes almacenamientos, que evita inmovilizar terrenos de valor o desfigurar el paisaje. Esta idea se presenta, hoy, de formas muy diversas:
En lugar de construir cubas, cubetas y otros recipientes al ras del suelo, es muy fácil, con cierto suplemento de coste, construirlas en fosas que se rellenan a continuación, o en cavernas, canteras o minas de sal. Esta técnica no sólo es utilizada por las pequeñas instalaciones (estaciones de servicio, calefacción doméstica), también para las reservas militares estratégicas.
El subsuelo encierra inmensos yacimientos de sal gema, en los cuales se pueden crear cavidades explotables como almacenamiento subterráneo de productos petrolíferos líquidos.
Es suficiente perforar pozos por los cuales se inyecta agua dulce de lavado, que disuelve la sal y vuelva a subir a la superficie en forma de salmuera; al cabo de un cierto tiempo, se obtiene en la base de cada pozo una gran bolsa rellena de esta salmuera, que es agua saturada de sal.
El pozo sirve a continuación para el rellenado de la cavidad por desplazamiento de la salmuera que es recogida en la superficie en un estanque a suelo abierto y luego para la recuperación del producto almacenado, empujado hacia lo alto por una reinyección de agua o de salmuera. El excedente de salmuera puede ser tratado para recuperar la sal o echado al mar ya sea con un curso de agua y respetando el porcentaje de salinidad, o mediante un oleoducto.
Utilizando la excavación con explosivos y otras técnicas de perforación de toneles, es posible realizar galerías subterráneas de almacenamiento a una profundidad que debe ser tanto mayor cuanto más volátil sea el producto, a fin de que la presión hidrostática que reina en el subsuelo sea siempre superior a la tensión de vapor de este último.
Una antigua mina de hierro ya abandonada puede ser puesta de nuevo en servicio a fin de servir como almacenamiento, por ejemplo: para gas-oil.
El gas puede ser almacenado bajo presión en rocas porosas subterráneas, bien se trate de yacimientos agotados o estructuras geológicas vacías que presenten las características requeridas.
El petróleo crudo no es directamente utilizable, salvo a veces como combustible. Para obtener sus diversos subproductos es necesario refinarlo, de donde resultan, por centenares, los productos acabados y las materias químicas más diversas. El petróleo crudo es una mezcla de diversas sustancias, las cuales tienen diferentes puntos de ebullición. Su separación se logra mediante el proceso llamado «destilación fraccionada». Esta función está destinada a las «refinerías», factorías de transformación y sector clave por definición de la industria petrolífera, bisagra que articula la actividad primaria y extractiva con la actividad terciaria.
El término de refino, nos fue heredado en el siglo XIX, cuando se contentaban con refinar el petróleo para lámparas, se reviste hoy de tres operaciones:
La separación de los productos petrolíferos unos de otros, y sobre la destilación del crudo (topping).
La depuración de los productos petrolíferos unos de otros, sobretodo su desulfuración.
La síntesis de hidrocarburos nobles mediante combinaciones nuevas de átomos de carbono y de hidrógeno, su deshidrogenación, su isomerización o su ciclado, obtenidos bajo el efecto conjugado de la temperatura, la presión y catalizadores apropiados.
En un inicio, el refino se practicaba directamente en los lugares de producción del petróleo, pero pronto se advirtió que era más económico transportar masivamente el crudo hasta las zonas de gran consumo y construir refinerías en los países industrializados, adaptando su concepción y su programa a las necesidades de cada país.
El petróleo crudo es depositado en los tanques de almacenamiento, en donde permanece por varios días para sedimentar y drenar el agua que normalmente contiene. Posteriormente es mezclado con otros crudos sin agua y es bombeado hacia la planta para su refinación.
Una refinería comprende una central termoeléctrica, un parque de reservas para almacenamiento, bombas para expedición por tubería, un apeadero para vagones-cisterna, una estación para vehículos de carretera para la carga de camiones cisterna. Es, pues, una fábrica compleja que funciona 24 horas diarias con equipos de técnicos que controlan por turno todos los datos.
Mientras que antes las antiguas refinerías ocupaban a centenares y a veces a millares de obreros en tareas manuales, sucias e insalubres, las más modernas están dotadas en la actualidad de automatismos generalizados para el control y la conducción de los procesos y no exigen más que un efectivo reducido de algunas personas.
En la industria de transformación del petróleo, la destilación es un proceso fundamental, pues permite hacer una separación de los hidrocarburos aprovechando sus diferentes puntos de ebullición, que es la temperatura a la cual hierve una sustancia.
Este es el primer proceso que aparece en una refinería. El petróleo que se recibe por ductos desde las instalaciones de producción, se almacena en tanques cilíndricos de gran tamaño, de donde se bombea a las instalaciones de este proceso.
El petróleo se calienta en equipos especiales y pasa a una columna de destilación que opera a presión atmosférica en la que, aprovechando la diferente volatilidad de los componentes, se logra una separación en diversas fracciones que incluyen gas de refinería, gas licuado de petróleo (LPG), nafta, queroseno (kerosene), gasóleo, y un residuo que corresponde a los compuestos más pesados que no llegaron a evaporarse.
En una segunda columna de destilación que opera a condiciones de vacío, se logra la vaporización adicional de un producto que se denomina gasóleo de vacío, y se utiliza como materia prima en otros procesos que forman parte de las refinerías para lograr la conversión de este producto pesado en otros ligeros de mayor valor.
En este proceso, el petróleo se separa en fracciones que después de procesamientos adicionales, darán origen a los productos principales que se venden en el mercado: el gas LP (comúnmente utilizado en las estufas domésticas), gasolina para los automóviles, turbosina para los aviones jet, diesel para los vehículos pesados y combustóleo para el calentamiento en las operaciones industriales.
Pero estos productos tienen que cumplir con una serie de especificaciones que aseguren su comportamiento satisfactorio.
Originalmente, las especificaciones tuvieron un enfoque eminentemente técnico, como el número de octano de la gasolina, o el de cetano del diesel, o el punto de humo del queroseno, o la viscosidad del combustóleo; actualmente, las consideraciones de protección ambiental han incorporado muchos más requerimientos, limitándose, por ejemplo en la gasolina, el contenido del azufre (este compuesto al quemarse, produce dióxido de azufre que al pasar a la atmósfera se oxida, y con el agua da origen a la lluvia ácida), el benceno (que es un hidrocarburo que tiene carácter cancerígeno), las olefinas y los aromáticos (que son familias de hidrocarburos altamente reactivas en la atmósfera, promotoras de la formación de ozono); la presión de vapor (que debe limitarse para reducir las emisiones evaporativas en los automóviles y gasolineras), e inclusive se requiere la presencia de compuestos oxigenados que no ocurren naturalmente en el petróleo (estos compuestos favorecen la combustión completa en los motores automotrices).
En forma generalizada, en los combustibles de hoy día se reducen los compuestos de azufre, para evitar daños ambientales por lluvia ácida. Al proceso que se utiliza para este propósito y al cual se someten las diferentes fracciones que se obtienen en la destilación atmosférica y al vacío se le denomina hidrotratamiento o hidrodesulfuración, por estar basado en el uso de hidrógeno que reacciona con los compuestos de azufre presentes en los hidrocarburos para formar ácido sulfhídrico; en un procesamiento posterior, este compuesto se convierte en azufre elemental sólido que tiene una importante aplicación industrial.
En el proceso ocurren reacciones adicionales que permiten complementar el tratamiento al eliminar también compuestos nitrogenados, convertir las olefinas en compuestos saturados y reducir el contenido de aromáticos.
El hidrotratamiento requiere de altas presiones y temperaturas, y la conversión se realiza en un reactor químico con catalizador sólido constituido por gg-alúmina impregnada con molibdeno, níquel y cobalto.
Los cortes de nafta que se obtienen por destilación directa de cualquier tipo de petróleo presentan un número de octano muy bajo (45 a 55), y serían inaplicables para la gasolina que requieren los automóviles modernos (octanajes de 80 a 100).
Es necesario entonces modificar la estructura química de los compuestos que integran las naftas, y para ello se utiliza el proceso de reformación en el que a condiciones de presión moderada y alta temperatura, se promueven reacciones catalíticas conducentes a la generación de compuestos de mayor octano como son los aromáticos y las isoparafinas.
Simultáneamente en las reacciones se produce hidrógeno, que se utiliza en la misma refinería en los procesos de hidrotratamiento. Las reacciones son promovidas por catalizadores basados en gg-alúmina como soporte de metales activos (platino-renio o platino-estaño).
Los isómeros son moléculas que tienen el mismo tipo y cantidad de átomos, pero con diferente estructura en su conformación.
En el caso particular de las parafinas, que son hidrocarburos constituidos por cadenas de átomos de carbono asociados a hidrógeno, se tienen para una misma fórmula general (CnH(2n+2)) una gran variedad de estructuras; cuando la cadena de átomos de carbono es lineal, el compuesto se denomina parafina normal, y si la cadena es ramificada, el compuesto es una isoparafina.
En el grupo de parafinas que forman parte de las gasolinas, las isoparafinas tienen número de octano superior a las parafinas normales, de tal manera que para mejorar la calidad del producto se utiliza un proceso en el que las parafinas normales se convierten en isoparafinas a través de reacciones de isomerización.
La práctica es separar por destilación la corriente de nafta en dos cortes, ligero y pesado; el ligero que corresponde a moléculas de cinco y seis átomos de carbono se alimenta al proceso de isomerización, mientras que el pesado, con moléculas de siete a once átomos de carbono, es la carga al proceso de reformación antes descrito. Las reacciones de isomerización son promovidas por catalizador de platino soportado en gg-alúmina.
Este es un proceso de conversión de hidrocarburos pesados presentes en los gasóleos de vacío, que permite producir gasolina, y en consecuencia aumentar el rendimiento de este combustible en las refinerías, disminuyendo la producción de residuales.
El proceso FCC se basa en la descomposición o rompimiento de moléculas de alto peso molecular; esta reacción se promueve por un catalizador sólido con base en zeolitas en presentación pulverizada, que se incorpora a los hidrocarburos de carga en un reactor de tipo tubular con flujo ascendente.
A la salida del reactor, el catalizador se separa de los productos de reacción a través de ciclones, y el coque que se genera y adhiere al mismo por las altas temperaturas de reacción, se quema en un equipo especial antes de recircularse al reactor; la energía liberada en el quemado sirve para dar parte del calentamiento de la corriente de carga.
En el proceso se producen, además de gasolina, productos más ligeros como gas seco (metano y etano) y fracciones de 3 a 5 átomos de carbono, de carácter olefínico, que se utilizan como materia prima en la producción de éteres y gasolina alquilada en procesos subsecuentes de la refinería.
También se genera un producto pesado rico en aromáticos, conocido como aceite cíclico ligero, que se procesa en las hidrotratadoras de la fracción diesel, y otro denominado aceite decantado que se incorpora al combustóleo.
Con el propósito de reducir las emisiones de monóxido de carbono e hidrocarburos no quemados de los vehículos con motor a gasolina, se agregan a este combustible componentes que contienen oxígeno en su molécula, como es el caso de los éteres.
Estos componentes se dosifican en la gasolina para obtener un contenido de oxígeno de 1 a 2% en peso y, en virtud de su alto número de octano, contribuyen al buen desempeño de este combustible en los motores. Los componentes oxigenados utilizados en la formulación de gasolinas en México son el MTBE (metil tert-butil éter) y en menor grado el TAME (tert-amil metil éter).
Estos éteres se obtienen en las refinerías a partir de alcohol metílico, producido en los complejos petroquímicos, y de las olefinas ligeras producidas en los procesos de desintegración catalítica FCC, con el beneficio adicional de reducir el contenido de estas
olefinas ligeras (importantes contribuyentes a la formación de ozono en la atmósfera) en la gasolina.
El proceso de alquilación es una síntesis química por medio de la cual se unen olefinas ligeras (propileno y/o butenos producidos en el proceso FCC antes descrito) con isobutano (proveniente de la fracción de gas LP recuperada en la destilación atmosférica del petróleo y complementada con corrientes equivalentes del procesamiento del gas natural).
Al resultado de la síntesis se le denomina alquilado o gasolina alquilada, producto constituido por componentes isoparafínicos cuyos puntos de ebullición se ubican dentro del intervalo de la gasolina.
En sus inicios el proceso tuvo como objetivo obtener un combustible aplicable a aviones de turbohélice, y aumentar el rendimiento de gasolina a partir de las diversas corrientes ligeras producidas en la refinería, pero actualmente su objetivo es producir una fracción cuyas características tanto técnicas (alto octano) como ambientales (bajas presión de vapor y reactividad fotoquímica) la hacen hoy en día, uno de los componentes más importantes de la gasolina reformulada.
La alquilación es un proceso catalítico que requiere de un catalizador de naturaleza ácida fuerte, y se utilizan para este propósito ya sea ácido fluorhídrico o ácido sulfúrico.
La cada vez mayor disponibilidad relativa de crudo pesado, con altos contenidos de azufre y metales y bajos rendimientos de destilados, hace necesario el contar con unidades de proceso que permitan modificar estos rendimientos en conformidad con las demandas, produciendo combustibles con calidad ecológica.
Esto apunta hacia la introducción de procesos de conversión que aumenten la producción de destilados y disminuyan los residuales pesados. A este tipo de procesos se les ha llamado en su conjunto procesos de fondo de barril, y constituyen ya una sección específica de la mayor parte de las refinerías.
En México, esta tendencia se justifica por la necesidad de procesar cada vez mayores proporciones de crudo tipo Maya. Entre las opciones de procesamiento, se tienen las orientadas a la producción de combustóleo de bajo contenido de azufre, utilizando el proceso de hidrotratamiento de residuos, aunque se empiezan a generalizar los esquemas de alta conversión, basados en hidrodesintegración profunda o en coquización, para aumentar el rendimiento de destilados a expensas de la desaparición del combustóleo.
Los procesos de hidrotratamiento se basan en la reacción catalítica del hidrógeno con los compuestos de azufre a condiciones severas de presión y temperatura, y con catalizadores de características muy especiales.
Los procesos de hidrodesintegración se diferencian fundamentalmente en el tipo de catalizador, que se diseña para orientar las reacciones a la descomposición de las moléculas para generar productos ligeros; la presencia del hidrógeno permite que estos productos resulten de carácter no olefínico y bajos en azufre.
Por otro lado, los procesos de coquización consisten en la desintegración térmica no catalítica de los residuales; la ausencia de hidrógeno hace que los productos del proceso sean ricos en olefinas y azufre, requiriendo entonces procesamiento ulterior en las unidades de hidrotratamiento de destilados. Simultáneamente se produce coque de petróleo, compuesto constituido principalmente de carbón.
Otro proceso basado en la descomposición térmica, bastante antiguo pero aún presente en muchas refinerías, es el de reducción de viscosidad, orientado a la autogeneración de diluentes del combustóleo para reducir el uso de destilados valiosos que también se usan para este propósito.
Dentro de la industria en general, los lubricantes juegan un papel fundamental, pues evitan que el contacto continuo entre partes móviles de una máquina provoque esfuerzos por fricción que puedan llevarla a un mal funcionamiento e inclusive a su destrucción.
Durante la refinación del petróleo es posible, si se desea, producir bases de lubricantes, las cuales deben cumplir en forma muy estricta con el rango de viscosidad que las caracteriza.
La materia prima para obtener las bases de lubricantes es el residuo de la destilación atmosférica del petróleo, el cual se redestila a condiciones de vacío para generar cortes específicos que se denominan: especialidades, neutro ligero y neutro, generándose además en otro proceso de desasfaltización del residuo de vacío por extracción con solventes, cortes adicionales que se denominan: neutro pesado, pesado y cilindros.
En su conjunto, los cortes lubricantes requieren de un procesamiento posterior que involucra plantas de desaromatización y de desparafinación, indispensables para ajustar los índices de viscosidad, o sea la variación de la viscosidad del lubricante con la temperatura, que es la propiedad fundamental que define su calidad. Simultáneamente se produce parafina suave y parafina dura.
La eliminación del ácido sulfhídrico (H2S) que acompaña al gas que se separa en la destilación atmosférica, y que está sobre todo presente en el gas resultante de los procesos de hidrotratamiento, es indispensable para evitar emisiones de azufre durante el quemado de dicho producto como combustible de la propia refinería.
La separación del H2S de los gases se realiza en un proceso que se denomina de endulzamiento, basado en la absorción en soluciones acuosas de aminas; la solución rica en sulfhídrico se regenera por agotamiento con vapor para recircularse a la absorción, y el H2S separado se procesa en unidades donde primeramente se realiza una combustión parcial del mismo para generar una proporción adecuada de H2S y SO2, que enseguida se hacen reaccionar catalíticamente para generar azufre elemental.
El gas natural está constituido principalmente por metano con proporciones variables de otros hidrocarburos (etano, propano, butanos, pentanos y gasolina natural) y de contaminantes diversos.
El objetivo del procesamiento del gas natural es eliminar los contaminantes, incluyendo los componentes corrosivos (agua y ácido sulfhídrico, este último también por su carácter contaminante), los que reducen el poder calorífico (dióxido de carbono y nitrógeno) y los que forman depósitos sólidos a bajas temperaturas (nuevamente agua y dióxido de carbono), para después separar los hidrocarburos más pesados que el metano, que constituyen materias primas básicas para la industria petroquímica.
Las etapas normales en el procesamiento del gas natural son la deshidratación (eliminación de agua, usualmente con adsorbentes sólidos, como alúmina o mallas moleculares), el endulzamiento (eliminación de ácido sulfhídrico y dióxido de carbono con soluciones absorbentes en un esquema similar al descrito para los procesos de endulzamiento de gas de refinería), y la recuperación criogénica de etano e hidrocarburos más pesados (condensación de estos componentes a bajas temperaturas, del orden de 100oC, y destilación fraccionada de los líquidos condensados). Otras etapas complementarias son el fraccionamiento de los hidrocarburos recuperados y la conversión del ácido sulfhídrico a azufre.
Además de los combustibles, del petróleo se obtienen derivados que permiten la producción de compuestos químicos que son la base de diversas cadenas productivas que terminan en una amplia gama de productos conocidos genéricamente como productos petroquímicos, que se utilizan en las industrias de fertilizantes, plásticos, alimenticia, farmacéutica, química y textil, entre otras.
Las principales cadenas petroquímicas son las del gas natural, las olefinas ligeras (etileno, propileno y butenos) y la de los aromáticos.
La cadena del gas natural se inicia con el proceso de reformación con vapor por medio del cual el metano reacciona catalíticamente con agua para producir el llamado gas de síntesis, que consiste en una mezcla de hidrógeno y óxidos de carbono.
El descubrimiento de este proceso permitió la producción a gran escala de hidrógeno, haciendo factible la producción posterior de amoníaco por su reacción con nitrógeno, separado del aire. El amoníaco es la base en la producción de fertilizantes.
También a partir de los componentes del gas de síntesis se produce metanol, materia prima en la producción de metil-terbutil-éter y teramil-metil-éter, componentes de la gasolina; otra aplicación es su uso como solvente en la industria de pinturas.
La cadena del etileno se inicia a partir del etano recuperado del gas natural en las plantas criogénicas, el cual se somete a un proceso de descomposición térmica para producir etileno principalmente, aunque también se forma hidrógeno, propano, propileno, butano, butilenos, butadieno y gasolina pirolítica.
Del etileno se producen un gran número de derivados, como las diferentes clases de polietilenos cuyas características dependen del proceso de polimerización; su aplicación se encuentra en la producción de plásticos, recubrimientos, moldes, etc.
Por otro lado, el etileno puede reaccionar con cloro para producir dicloroetano y posteriormente monómero de cloruro de vinilo, un componente fundamental en la industria del plástico, y otros componentes clorados de uso industrial.
La oxidación del etileno produce oxido de etileno y glicoles, componentes básicos para la producción de poliéster, así como de otros componentes de gran importancia para la industria química, incluyendo las resinas PET (poli etilén tereftalato), actualmente usadas en la fabricación de botellas para refresco, medicinas, etc.
El monómero de estireno, componente fundamental de la industria del plástico y el hule sintético, se produce también a partir del etileno, cuando éste se somete, primero a su reacción con benceno para producir etilbenceno y después a la deshidrogenación de este compuesto. El acetaldehído, componente básico en la producción de ácido acético y otros productos químicos, también se produce a partir del etileno.
Otra olefina ligera, el propileno, que se produce ya sea por deshidrogenación del propano contenido en el gas LP, como subproducto en las plantas de etileno o en las plantas de descomposición catalítica fluida FCC de refinerías, es la base para la producción de polipropileno a través de plantas de polimerización. Otro producto derivado del propileno y del amoníaco es el acrilonitrilo, de importancia fundamental en la industria de las fibras sintéticas.
Del propileno se puede producir alcohol isopropílico de gran aplicación en la industria de solventes y pinturas, así como el óxido de propileno; otros derivados del propileno son el ácido acrílico, la acroleína, compuestos importantes en la industria del plástico.
Como derivado de la deshidrogenación de los butenos o bien como subproducto del proceso de fabricación del etileno, se obtiene el 1,3 butadieno, que es una materia prima fundamental en la industria de los elastómeros, llantas para toda clase de vehículos, juntas, sellos, etc.
Una cadena fundamental en la industria petroquímica se basa en los aromáticos (benceno, tolueno y xilenos). La nafta virgen obtenida del petróleo crudo contiene parafinas, nafténicos y aromáticos en el intervalo de 6 a 9 átomos de carbono.
Esta fracción del petróleo, después de un hidrotratamiento para eliminar compuestos de azufre, se somete al proceso de Reformación BTX, el cual promueve fundamentalmente las reacciones de ciclización de parafinas y de deshidrogenación de nafténicos, con lo cual se obtiene una mezcla de hidrocarburos rica en aromáticos.
Estos componentes se separan, primero del resto de los hidrocarburos a través de un proceso de extracción con solvente, y después entre ellos, por medio de diversos esquemas de separación.
En procesos ulteriores se ajusta la proporción relativa de los aromáticos a la demanda del mercado, por ejemplo, convirtiendo tolueno en benceno por hidrodealquilación, o bien en la isomerización de xilenos, para aumentar la producción de orto-xileno.
Otro proceso fundamental es la desproporcionalización de los aromáticos pesados para incrementar la producción de benceno, tolueno y xilenos. Una vez separados los aromáticos, se inicia la cadena petroquímica de cada uno de ellos.
El benceno es la base de producción de ciclohexano y de la industria del nylon, así como del cumeno para la producción industrial de acetona y fenol; el tolueno participa de una forma importante en la industria de los solventes, explosivos y en la elaboración de poliuretanos. Los xilenos son el inicio de diversas cadenas petroquímicas, principalmente la de las fibras sintéticas.
Procesos de la Industria del petróleo basados en la separación física de componentes aprovechando diversos principios como los siguientes:
D. Derivados del petróleo
En Panamá el crudo es transformado en productos livianos y productos pesados como los siguientes:
1. Los gases licuados Butano y Propano: Se verifica que su composición y su volatilidad sean correctas a través de los dos criterios básicos: ensayo de evaporación (que mide el residuo fondo de botella) y tensión de vapor (que mide la presión relativa en el recipiente a la temperatura límite de utilización 50°C). Se usa como gas licuado para cocinar, combustión interna, calentadores, mecheros de laboratorios y lámparas de gas.
El análisis completo de un producto petrolífero ligero se hace por cromatografía en fase gaseosa, los diversos hidrocarburos, arrastrados sucesivamente por una corriente de gas portador, son detectados e identificados a la salida del aparato, y registrado su volumen relativo.
2. Las Gasolinas: Sometidas a una garantía de utilización particularmente severa tanto como carburante como disolvente, debe, primeramente, estar compuesta por hidrocarburos de volatilidad correcta, lo que se verifica por medio de un test de destilación en alambique automático. Su comportamiento en un motor viene cifrado en laboratorio por diversos índices de octano que miden la resistencia de detonación y al autoencendido. La gasolina es de naturaleza incolora, pero el aspecto amarillo, rojo o azul de un carburante, conseguido por adición de un colorante artificial, facilita el control de los fraudes.
Regular: Se usa en motores de combustión interna de baja compresión, motores de lanchas, podadoras de césped y motores pequeños.
b. Super: Motores de combustión interna de mediana y alta compresión tales como automóviles de pasajeros y camiones pequeños.
3. Queroseno (kerosene): Producto básico de la industria petrolífera desde hace cien años. A fin de limitar los riesgos inherentes a la manipulación de un producto fácilmente inflamable, su volatilidad está limitada por un contenido en gasolina que se mantiene inferior al 10%, verificado en el test de destilación, mientras que otro aparato mide el punto de encendido, que es la temperatura a la cual un producto petrolífero calentado suavemente comienza a desprender suficientes vapores como para provocar su inflamación súbita al contacto con una llamita. Un petróleo bien depurado debe poder arder durante largas horas sin humear y sin desprender carbonilla, lo que se verifica empíricamente por medio de lámparas normalizadas.
En el caso de los carburorreactores, se mide además su resistencia a la corrosión, a la congelación y a la formación de emulsiones acuosas, así como su estabilidad térmica: este último test se realiza en el «fuel coker», aparato que reproduce en el laboratorio las condiciones de alimentación y de precalentamiento sufrida por el queroseno en los motores de reacción.