Portada » Geología » Representación de las capas de la tierra
es la zona del Sol donde se produce la fusión nuclear debido a la alta temperatura, es decir, el generador de la energía del Sol.
: las partículas que transportan la energía (fotones) intentan escapar al exterior en un viaje que puede durar unos 100.000 años debido a que éstos fotones son absorbidos continuamente y reemitidos en otra dirección distinta a la que tenían.
en ésta zona se produce el fenómeno de la convección, es decir, columnas de gas caliente ascienden hasta la superficie, se enfrían y vuelven a descender.
es una capa delgada, de unos 300 Km, que es la parte del Sol que nosotros vemos, la superfície. Desde aquí se irradia luz y calor al espacio. La temperatura es de unos 5.000°C. En la fotosfera aparecen las manchas oscuras y las fáculas que son regiones brillantes alrededor de las manchas, con una temperatura superior a la normal de la fotosfera y que están relacionadas con los campos magnéticos del Sol.
sólo puede ser vista en la totalidad de un eclipse de Sol. Es de color rojizo, de densidad muy baja y de temperatura altísima, de medio millón de grados. Esta formada por gases enrarecidos y en ella existen fortísimos campos magnéticos.
capa de gran extensión, temperaturas altas y de bajísima densidad. Está formada por gases enrarecidos y gigantescos campos magnéticos que varían su forma de hora en hora. Ésta capa es impresionante vista durante la fase de totalidad de un eclipse de Sol.
Las manchas solares tienen una parte central obscura conocida como umbra, rodeada de una regíón más clara llamada penumbra. Las manchas solares son obscuras ya que son más frías que la fotosfera que las rodea.
Las manchas son el lugar de fuertes campos magnéticos. La razón por la cual las manchas solares son frías no se entiende todavía, pero una posibilidad es que el campo magnético en las manchas no permite la convección debajo de ellas.
Las manchas solares generalmente crecen y duran desde varios días hasta varios meses. Las observaciones de las manchas solares reveló primero que el Sol rota en un período de 27 días (visto desde la Tierra).
El número de manchas solares en el Sol no es constante, y cambia en un período de 11 años conocido como el ciclo solar. La actividad solar está directamente relacionada con este ciclo.
Las protuberancias solares son enormes chorros de gas caliente expulsados desde la superficie del Sol, que se extienden a muchos miles de kilómetros. Las mayores llamaradas pueden durar varios meses.
El campo magnético del Sol desvía algunas protuberancias que forman así un gigantesco arco. Se producen en la cromosfera que está a unos 100.000 grados de temperatura.
Las protuberancias son fenómenos espectaculares. Aparecen en el limbo del Sol como nubes flameantes en la alta atmósfera y corona inferior y están constituidas por nubes de materia a temperatura más baja y densidad más alta que la de su alrededor.
Las temperaturas en su parte central son, aproximadamente, una centésima parte de la temperatura de la corona, mientras que su densidad es unas 100 veces la de la corona ambiente. Por lo tanto, la presión del gas dentro de una protuberancia es aproximadamente igual a la de su alrededor.
El viento solar es un flujo de partículas cargadas, principalmente protones y electrones, que escapan de la atmósfera externa del sol a altas velocidades y penetran en el Sistema Solar.
Algunas de estas partículas cargadas quedan atrapadas en el campo magnético terrestre girando en espiral a lo largo de las líneas de fuerza de uno a otro polo magnético. Las auroras boreales y australes son el resultado de las interacciones de estas partículas con las moléculas de aire.
La velocidad del viento solar es de cerca de 400 kilómetros por segundo en las cercanías de la órbita de la Tierra. El punto donde el viento solar se encuentra que proviene de otras estrellas se llama heliopausa, y es el límite teórico del Sistema Solar. Se encuantra a unas 100 UA del Sol. El espacio dentro del límite de la heliopausa, conteniendo al Sol y al sistema solar, se denomina heliosfera.
La Tierra se formó hace unos 4.650 millones de años, junto con todo el Sistema Solar. Aunque las piedras más antiguas de la Tierra no tienen más de 4.000 millones de años, los meteoritos, que se corresponden geológicamente con el núcleo de la Tierra, dan fechas de unos 4.500 millones de años, y la cristalización del núcleo y de los cuerpos precursores de los meteoritos, se cree que ocurríó al mismo tiempo, unos 150 millones de años después de formarse la Tierra y el Sistema Solar.
Después de condensarse a partir del polvo cósmico y del gas mediante la atracción gravitacional, la Tierra era casi homogénea y bastante fría. Pero la continuada contracción de materiales y la radiactividad de algunos de los elementos más pesados hizo que se calentara.
Después, comenzó a fundirse bajo la influencia de la gravedad, produciendo la diferenciación entre la corteza, el manto y el núcleo, con los silicatos más ligeros movíéndose hacia arriba para formar la corteza y el manto y los elementos más pesados, sobre todo el hierro y el níquel, cayendo hacia el centro de la Tierra para formar el núcleo.
Al mismo tiempo, la erupción de los numerosos volcanes, provocó la salida de vapores y gases volátiles y ligeros. Algunos eran atrapados por la gravedad de la Tierra y formaron la atmósfera primitiva, mientras que el vapor de agua condensado formó los primeros océanos.
El magnetismo terrestre significa que la Tierra se comporta como un enorme imán. El físico inglés William Gilbert fue el primero que lo señaló, en 1600, aunque los efectos del magnetismo terrestre se habían utilizado mucho antes en las brújulas primitivas.
La Tierra está rodeada por un potente campo magnético, como si el planeta tuviera un enorme imán en su interior cuyo polo sur estuviera cerca del polo norte geográfico y viceversa. Por paralelismo con los polos geográficos, los polos magnéticos terrestres reciben el nombre de polo norte magnético y polo sur magnético, aunque su magnetismo real sea opuesto al que indican sus nombres.
El polo norte magnético se sitúa hoy cerca de la costa oeste de la isla Bathurst en los Territorios del Noroeste en Canadá. El polo sur magnético está en el extremo del continente antártico en Tierra Adelia.
Las posiciones de los polos magnéticos no son constantes y muestran notables cambios de año en año. Las variaciones en el campo magnético de la Tierra incluyen el cambio en la dirección del campo provocado por el desplazamiento de los polos. Esta es una variación periódica que se repite cada 960 años. También existe una variación anual más pequeña.
Desde el exterior hacia el interior podemos dividir la Tierra en cinco partes:
Es la cubierta gaseosa que rodea el cuerpo sólido del planeta. Tiene un grosor de más de 1.100 km, aunque la mitad de su masa se concentra en los 5,6 km más bajos.
Se compone principalmente de océanos, pero en sentido estricto comprende todas las superficies acuáticas del mundo, como mares interiores, lagos, ríos y aguas subterráneas. La profundidad media de los océanos es de 3.794 m, más de cinco veces la altura media de los continentes.
Compuesta sobre todo por la corteza terrestre, se extiende hasta los 100 km de profundidad. Las rocas de la litosfera tienen una densidad media de 2,7 veces la del agua y se componen casi por completo de 11 elementos, que juntos forman el 99,5% de su masa. El más abundante es el oxígeno, seguido por el silicio, aluminio, hierro, calcio, sodio, potasio, magnesio, titanio, hidrógeno y fósforo. Además, aparecen otros 11 elementos en cantidades menores del 0,1: carbono, manganeso, azufre, bario, cloro, cromo, flúor, circonio, níquel, estroncio y vanadio. Los elementos están presentes en la litosfera casi por completo en forma de compuestos más que en su estado libre.
La litosfera comprende dos capas, la corteza y el manto superior, que se dividen en unas doce placas tectónicas rígidas. El manto superior está separado de la corteza por una discontinuidad sísmica, la discontinuidad de Mohorovicic, y del manto inferior por una zona débil conocida como astenosfera. Las rocas plásticas y parcialmente fundidas de la astenosfera, de 100 km de grosor, permiten a los continentes trasladarse por la superficie terrestre y a los océanos abrirse y cerrarse.
Se extiende desde la base de la corteza hasta una profundidad de unos 2.900 km. Excepto en la zona conocida como astenosfera, es sólido y su densidad, que aumenta con la profundidad, oscila de 3,3 a 6. El manto superior se compone de hierro y silicatos de magnesio como el olivino y el inferior de una mezcla de óxidos de magnesio, hierro y silicio.
Tiene una capa exterior de unos 2.225 km de grosor con una densidad relativa media de 10. Esta capa es probablemente rígida y su superficie exterior tiene depresiones y picos. Por el contrario, el núcleo interior, cuyo radio es de unos 1.275 km, es sólido. Ambas capas del núcleo se componen de hierro con un pequeño porcentaje de níquel y de otros elementos. Las temperaturas del núcleo interior pueden llegar a los 6.650 °C y su densidad media es de 13.
El núcleo interno irradia continuamente un calor intenso hacia afuera, a través de las diversas capas concéntricas que forman la porción sólida del planeta. La fuente de este calor es la energía liberada por la desintegración del uranio y otros elementos radiactivos. Las corrientes de convección dentro del manto trasladan la mayor parte de la energía térmica de la Tierra hasta la superficie.
La mezcla de gases que forma el aire actual se ha desarrollado a lo largo de 4.500 millones de años. La atmósfera primigenia debíó estar compuesta únicamente de emanaciones volcánicas, es decir, vapor de agua, dióxido de carbono, dióxido de azufre y nitrógeno, sin rastro apenas de oxígeno.
Para lograr la transformación han tenido que desarrollarse una serie de procesos. Uno de ellos fue la condensación. Al enfriarse, la mayor parte del vapor de agua de origen volcánico se condensó, dando lugar a los antiguos océanos. También se produjeron reacciones químicas. Parte del dióxido de carbono debíó reaccionar con las rocas de la corteza terrestre para formar carbonatos, algunos de los cuales se disolverían en los nuevos océanos.
Más tarde, cuando evoluciónó la vida primitiva capaz de realizar la fotosíntesis, empezó a producir oxígeno. Hace unos 570 millones de años, el contenido en oxígeno de la atmósfera y los océanos aumentó lo bastante como para permitir la existencia de la vida marina. Más tarde, hace unos 400 millones de años, la atmósfera conténía el oxígeno suficiente para permitir la evolución de animales terrestres capaces de respirar aire.
La atmósfera se divide en diversas capas:
La troposfera llega hasta un límite superior (tropopausa) situado a 9 Km de altura en los polos y los 18 km en el ecuador. En ella se producen importantes movimientos verticales y horizontales de las masas de aire (vientos) y hay relativa abundancia de agua. Es la zona de las nubes y los fenómenos climáticos: lluvias, vientos, cambios de temperatura, … Y la capa de más interés para la ecología. La temperatura va disminuyendo conforme se va subiendo, hasta llegar a -70ºC en su límite superior.
La estratosfera comienza a partir de la tropopausa y llega hasta un límite superior (estratopausa), a 50 km de altitud. La temperatura cambia su tendencia y va aumentando hasta llegar a ser de alrededor de 0ºC en la estratopausa. Casi no hay movimiento en dirección vertical del aire, pero los vientos horizontales llegan a alcanzar frecuentemente los 200 km/h, lo que facilita el que cualquier sustancia que llega a la estratosfera se difunda por todo el globo con rapidez. Por ejemplo, esto es lo que ocurre con los CFC que destruyen el ozono. En esta parte de la atmósfera, entre los 30 y los 50 kilómetros, se encuentra el ozono, importante porque absorbe las dañinas radiaciones de onda corta.
La mesosfera, que se extiende entre los 50 y 80 km de altura, contiene sólo cerca del 0,1% de la masa total de laire. Es importante por la ionización y las reacciones químicas que ocurren en ella. La disminución de la temperatura combinada con la baja densidad del aire en la mesosfera determinan la formación de turbulencias y ondas atmosféricas que actúan a escalas espaciales y temporales muy grandes. La mesosfera es la regíón donde las naves espaciales que vuelven a la Tierra empiezan a notar la estructura de los vientos de fondo, y no sólo el freno aerodinámico.
La ionosfera se extiende desde una altura de casi 80 km sobre la superficie terrestre hasta 640 km o más. A estas distancias, el aire está enrarecido en extremo. Cuando las partículas de la atmósfera experimentan una ionización por radiación ultravioleta, tienden a permanecer ionizadas debido a las mínimas colisiones que se producen entre los iones. La ionosfera tiene una gran influencia sobre la propagación de las señales de radio. Una parte de la energía radiada por un transmisor hacia la ionosfera es absorbida por el aire ionizado y otra es refractada, o desviada, de nuevo hacia la superficie de la Tierra. Este último efecto permite la recepción de señales de radio a distancias mucho mayores de lo que sería posible con ondas que viajan por la superficie terrestre.
La regíón que hay más allá de la ionosfera recibe el nombre de exosfera y se extiende hasta los 9.600 km, lo que constituye el límite exterior de la atmósfera. Más allá se extiende la magnetosfera, espacio situado alrededor de la Tierra en el cual, el campo magnético del planeta domina sobre el campo magnético del medio interplanetario.
Desde las cadenas volcánicas situadas en el fondo de los océanos emergen lavas con muchos de los componentes del agua de mar: cloro, sodio, bromo, yodo, carbono y nitrógeno, los que paulatinamente se van transformando en sales. Además, los ríos arrastran las sales y minerales que encuentran en su recorrido a través de los continentes. En los océanos, la fuerte radiación del Sol evapora las aguas haciendo que las sales se acumulen a lo largo del tiempo. En el agua del mar, junto a un gran número de elementos químicos, se encuentran gases disueltos y nutrientes para la vida oceánica.
La salinidad general de los océanos es de 35 partes por cada 1000 (35/000). Esto significa que en 1.000 gramos (1 kilo) de agua de mar, 35 gramos corresponden a sales.